- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hedrick, James L. (2)
-
Jadrich, Caleb N. (2)
-
Lin, Binhong (2)
-
Pane, Vince E. (2)
-
Park, Nathaniel H. (2)
-
Waymouth, Robert M. (2)
-
Arrechea, Pedro L (1)
-
Arrechea, Pedro L. (1)
-
Dausse, Charles (1)
-
Erdmann, Tim (1)
-
Hedrick, James L (1)
-
Jadrich, Caleb N (1)
-
Jia, Yuan (1)
-
Jones, Gavin O. (1)
-
Lui, Kai Hin (1)
-
Waymouth, Robert M (1)
-
Zhang, Jia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A library of structurally related heterocycles containing N-H motifs are explored as ring-opening polymerization (ROP) pre-catalysts. Upon deprotonation of these heterocycles with appropriate bases, corresponding salts are formed, which catalyze the ROP of various lactones and cyclic carbonates, affording polymers with dispersity values ranging from 1.01 to 1.12. These catalysts exhibit a wide range of catalytic activities, spanning over seven orders of magnitude (>107), with their relative rates generally correlating to the pKa of the N-H group in the neutral heterocycle. Despite apparent structural and electronic similarities, these heterocycle catalysts display markedly different kinetic behaviors regarding the identity of different cations. Kinetic and NMR studies have revealed two distinct sets of mechanisms: small alkali metal cations such as Li+ and Na+ reduce the activity of imidazol(in)e derived catalysts due to their tendency to associate with the alkoxide chain-end, thus inhibiting its propagation; conversely, these cations form robust cation-π assemblies with indolocarbazole anions, simultaneously binding and activating monomer carbonyls towards the nucleophilic attack, resulting in a significant rate enhancement. This distinctive activation motif of the indolocarbazole sets it apart from other catalysts by utilizing cations as a potent handle for modulating polymerization reactivity. Coupled with its high availability, good solubility, high activity, moderate basicity, and high selectivity, the indolocarbazole heterocycle emerges as one of the most versatile organocatalysts for ring-opening polymerization.more » « less
-
Jadrich, Caleb N.; Pane, Vince E.; Lin, Binhong; Jones, Gavin O.; Hedrick, James L.; Park, Nathaniel H.; Waymouth, Robert M. (, Journal of the American Chemical Society)
-
Lin, Binhong; Jadrich, Caleb N.; Pane, Vince E.; Arrechea, Pedro L.; Erdmann, Tim; Dausse, Charles; Hedrick, James L.; Park, Nathaniel H.; Waymouth, Robert M. (, Macromolecules)null (Ed.)
An official website of the United States government
